مثال 1: استثمرت احدى الشركات مبلغا مقداره 900 الف دولار لتنفيذ احد المشاريع وكانت العائدات المتوقعة من هذا المشروع (بالالاف) خلال فترة 7 سنوات كالاتى:

Year	1	2	3	4	5	6	7
Cash flow (\$)	200	250	300	450	400	200	150

احسب الاتي:

Payback Period .A

r = %23 اذا كانت NPV .B

C. استخرج قيمة ال IRR. و هل تنصح الشركة بتنفيذ هذا المشروع اذا كانت نسبة الاستثمار المفروضة هي 26؟ ولماذا؟

لحل:

A- Payback Period هي الفترة التي يسترد خلالها المبلغ المستثمر بالكامل لقيمة Payback Period هي الفترة التي يسترد خلالها المبلغ المستثمر بالكامل التراكمي نجد ان المبلغ يسترد بعد ال 3 سنوات اي

Year	Cash flow	II=(-900)	
		_ +	
1	200 -	-700	
2	250	-450	
3	300	-150	
4	450	300	
5	400	700	
6	200	900	
7	150	1050	

Payback in the 4th year (X)

$$\frac{300 - (-150)}{4 - 3} = \frac{0 - (-150)}{X - 3} \Longrightarrow X - 3 = \frac{150}{450} \Longrightarrow X = 3.33 = 3year + 4month$$

	1 0
3	-150
X	0
4	300

B- The Net present Value (NPV) can be obtained from the following equation (r = 23%)

Year (n)	Cash flow (FV)	Present Values (PV) $PV = \frac{FV}{(1+r)^n} = \frac{FV}{1.23^n}$	
1	200	162.6	
2	250	165.25	
3	300	161.22	
4	450	196.605	
5	400	142.08	
6	200	57.76	
7	150	35.22	
Total Palues		920.735	

$$NPV = \sum_{i} PV - II = 920.735 - 900 = 20.735$$
 thousand dollars

C- IRR is the discount rate when NPV $\stackrel{\sim}{=} 0$. Mathematically. The solution to problems involving IRR is by a trial-and-error solution

$$\sum_{t=1}^{n} \left[\frac{FV}{(1+IRR)^{t}} \right] - II = 0$$

$$\left[\frac{200}{(1+IRR)^{1}} + \frac{250}{(1+IRR)^{2}} + \frac{300}{(1+IRR)^{3}} + \frac{450}{(1+IRR)^{4}} + \frac{400}{(1+IRR)^{5}} + \frac{200}{(1+IRR)^{6}} + \frac{150}{(1+IRR)^{7}} \right] = 900$$

$$\left[\frac{2}{(1+IRR)^{1}} + \frac{2.5}{(1+IRR)^{2}} + \frac{3}{(1+IRR)^{3}} + \frac{4.5}{(1+IRR)^{4}} + \frac{4}{(1+IRR)^{5}} + \frac{2}{(1+IRR)^{6}} + \frac{1.5}{(1+IRR)^{7}} \right] = 9$$
Trial and Error:

Second trial, $IRR_2 = IRR_1 \left[1 + \left(\frac{LHS - RHS}{RHS} \right) \right]$

IRR ₁	LHS	RHS	IRR ₂
0.26	8.504	9	0.246
0.25	8.729	9	0.242
0.24	8.963	9	0.239
0.24			

IRR $\approx 24\%$

لا ينصح الشركة بتنفيذ هذا المشروع لأنه عندما تكون نسبة الاستثمار المفروضة (ال %26) أكبر من معدل العائد الداخلي للمشروع (ال %24) فانه سوف لا يتم استرداد المبلغ المستثمر فضلا عن تحصيل أي ربح

مثا<u>ل2</u>: استثمرت احدى الشركات مبلغا مقداره 85 الف دو لار لتنفيذ احد المشاريع وكانت العائدات المتوقعة من هذا المشروع (بالألاف) خلال فترة 5 سنوات كالاتي:

 Year
 1
 2
 3
 4
 5

 Cash flow (\$)
 10
 25
 35
 45
 30

احسب الاتي: Payback Period .A

r = %17اذا کانت NPV B

C. استخرج قيمة ال IRR. وهل تنصح الشركة بتنفيذ هذا المشروع اذا كانت نسبة الاستثمار المفروضة هي 20؟ ولماذا؟
 الحل الحال

Payback Period -A هي الفترة التي يسترد خلالها المبلغ المستثمر بالكامل لقيمة Payback Period -A

Year	Cash	II=(-85)	
	flow	+	
1	10	→ -75	
2	25	-50	
3	35	-15	
4	45	30	
5	30	60	

3	-15
X	0
4	30

Payback in the 4^{th} year (X)

$$\frac{30 - (-15)}{4 - 3} = \frac{0 - (-15)}{X - 3} \Longrightarrow X - 3 = \frac{15}{45} \Longrightarrow X = 3.33 = 3year + 4month$$

B- The Net present Value (NPV) can be obtained from the following equation (r = 17%)

Year (n)	Cash flow (FV)	Present Values (PV) $PV = \frac{FV}{(1+r)^n} = \frac{FV}{1.17^n}$	
1	10	8.547	
2	25	18.2625	
3	35	21.854	
4	45	24.0165	
5	30	13.683	
Total P	Present Values $(\sum PV)$	86.363	

$$NPV = \sum_{i} PV - II = 86.363 - 85 = 1.363 \text{ thousand dollars}$$

C- IRR is the discount rate when NPV $\stackrel{\sim}{=} 0$. Mathematically. The solution to problems involving IRR is by a trial-and-error solution

$$\sum_{t=1}^{n} \left[\frac{FV}{(1+IRR)^{t}} \right] - II = 0$$

$$\left[\frac{10}{(1+IRR)^{1}} + \frac{25}{(1+IRR)^{2}} + \frac{35}{(1+IRR)^{3}} + \frac{45}{(1+IRR)^{4}} + \frac{30}{(1+IRR)^{5}} + \right] = 85$$
Trial and Error:

Second trial,	$IRR_2 = IRR_1 \begin{bmatrix} 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \end{bmatrix}$	<u> (LHS — RHS</u>)]
Second trial,	100°	<u> </u>	$\langle RHS \rangle$

IRR ₁	LHS	RHS	IRR_2
0.20	79.707	85	0.188
0.19	81.839	85	0.183
0.18	84.055	85	0.178
0.18			

 $IRR \approx 18\%$

لا ينصح الشركة بتنفيذ هذا المشروع لأنه عندما تكون نسبة الاستثمار المفروضة (ال %20) أكبر من معدل العائد الداخلي للمشروع (ال %18) فانه سوف لا يتم استرداد المبلغ المستثمر فضلا عن تحصيل اي ربح